% \iffalse meta-comment % % File: expkv.dtx Copyright (C) 2020-2024 Jonathan P. Spratte % % This work may be distributed and/or modified under the conditions of the % LaTeX Project Public License (LPPL), either version 1.3c of this license or % (at your option) any later version. The latest version of this license is in % the file: % % http://www.latex-project.org/lppl.txt % % ------------------------------------------------------------------------------ % %<*driver>^^A>>= \def\expkvDocNoGenerate{} \input expkv-bundle.ins \generate{\file{expkv.sty}{\from{expkv.dtx}{pkg}}} \generate{\file{expkv.tex}{\from{expkv.dtx}{tex}}} \generate{\file{t-expkv.tex}{\from{expkv.dtx}{ctx}}} \endbatchfile %^^A=<< % \fi % % \section{\expkv} %^^A the LaTeX package >>= % \subsection{The \LaTeX\ Package} % First we set up the \LaTeX\ package. That one doesn't really do much except % |\input|ting the generic code and identifying itself as a package. Additional % an |all| option is declared to load all the sub modules in one go. % \gobbledocstriptag %<*pkg> % \begin{macrocode} \def\ekv@tmp {% \ProvidesFile{expkv.tex}% [\ekvDate\space v\ekvVersion\space an expandable key=val implementation]% } \input{expkv.tex} \ProvidesPackage{expkv}% [\ekvDate\space v\ekvVersion\space an expandable key=val implementation] \let\ekv@tmp\@empty \DeclareOption{all} {% \def\ekv@tmp {\RequirePackage{expkv-pop,expkv-cs,expkv-def,expkv-opt}}% } \ProcessOptions\relax \ekv@tmp % \end{macrocode} % \gobbledocstriptag % %^^A=<< %^^A the ConTeXt module >>= % \subsection{The \ConTeXt\ module} % This is pretty straight forward, we just have to change the error throwing % mechanism for \ConTeXt\ (the approach taken for plain and \LaTeX\ breaks in % \ConTeXt, effectively breaking \ConTeXt, dropping you in an interactive \TeX\ % session with almost no means of escape). % \gobbledocstriptag %<*ctx> % \begin{macrocode} \writestatus{loading}{ConTeXt User Module / expkv} \unprotect \input expkv.tex \long\def\ekv@err@collect#1\par#2% {\directlua{tex.error[[\detokenize{#2} Error: #1]]}} \writestatus{loading} {ConTeXt User Module / expkv / Version \ekvVersion\space loaded} \protect\endinput % \end{macrocode} % \gobbledocstriptag % %^^A=<< %^^A main file >>= % \subsection{The Generic Code} % The rest of this implementation will be the generic code. % \gobbledocstriptag %<*tex> % % We make sure that it's only input once: % \begin{macrocode} \expandafter\ifx\csname ekvVersion\endcsname\relax \else \expandafter\endinput \fi % \end{macrocode} % % Check whether \eTeX\ and |\expanded| are available -- \expkv\ requires \eTeX. % \begin{macrocode} \begingroup \edef\ekvtmpa{\string\expanded} \edef\ekvtmpb{\meaning\expanded} \expandafter \endgroup \ifx\ekvtmpa\ekvtmpb \expandafter\let\csname ekv@expanded\endcsname\expanded \expandafter\let\csname ekv@unexpanded\endcsname\unexpanded \else \begingroup \edef\ekvtmpa{\string\expanded} \edef\ekvtmpb{\meaning\normalexpanded} \expandafter \endgroup \ifx\ekvtmpa\ekvtmpb \expandafter\let\csname ekv@expanded\endcsname\normalexpanded \expandafter\let\csname ekv@unexpanded\endcsname\normalunexpanded \else \errmessage {expkv Error: e-TeX and the \noexpand\expanded primitive required}% \expandafter\endinput \fi \fi % \end{macrocode} % % \begin{macro}{\ekvVersion,\ekvDate} % We're on our first input, so lets store the version and date in a macro. % \begin{macrocode} \def\ekvVersion{2.1} \def\ekvDate{2024-12-26} % \end{macrocode} % \end{macro} % % If the \LaTeX\ format is loaded we want to be a good file and report back who % we are, for this the package will have defined |\ekv@tmp| to use % |\ProvidesFile|, else this will expand to a |\relax| and do no harm. % \begin{macrocode} \csname ekv@tmp\endcsname % \end{macrocode} % % Store the category code of |@| to later be able to reset it and change it to % 11 for now. % \begin{macrocode} \expandafter\chardef\csname ekv@tmp\endcsname=\catcode`\@ \catcode`\@=11 % \end{macrocode} % |\ekv@tmp| might later be reused to gobble any prefixes which might be % provided to |\ekvdef| and similar in case the names are invalid, we just % temporarily use it here as means to store the current category code of |@| to % restore it at the end of the file, we never care for the actual definition of % it. % % \begin{macro}[internal]{\ekv@if@lastnamedcs} % If the primitive |\lastnamedcs| is available, we can be a bit faster than % without it. So we test for this and save the test's result in this macro. % \begin{macrocode} \begingroup \edef\ekv@tmpa{\string \lastnamedcs} \edef\ekv@tmpb{\meaning\lastnamedcs} \ifx\ekv@tmpa\ekv@tmpb \def\ekv@if@lastnamedcs{\long\def\ekv@if@lastnamedcs##1##2{##1}} \else \def\ekv@if@lastnamedcs{\long\def\ekv@if@lastnamedcs##1##2{##2}} \fi \expandafter \endgroup \ekv@if@lastnamedcs % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@empty} % Sometimes we have to introduce a token to prevent accidental brace stripping. % This token would then need to be removed by |\@gobble| or similar. Instead we % can use |\ekv@empty| which will just expand to nothing, that is faster than % gobbling an argument. % \begin{macrocode} \def\ekv@empty{} % \end{macrocode} % \end{macro} % % \begin{macro}[internal] % { % \@gobble,\@gobbletwo,\@gobblethree, % \@firstofone,\@firstoftwo,\@secondoftwo, % \ekv@fi@gobble,\ekv@fi@firstofone,\ekv@fi@firstoftwo,\ekv@fi@secondoftwo, % \ekv@gobble@mark,\ekv@gobbleto@stop,\ekv@gobble@from@mark@to@stop % } % Since branching tests are often more versatile than |\if...\else...\fi| % constructs, we define helpers that are branching pretty fast. Also here are % some other utility functions that just grab some tokens. The ones that are % also contained in \LaTeX\ don't use the |ekv| prefix. Not all of the ones % defined here are really needed by \expkv\ but are provided because packages % like \expkvd\ or \expkvo\ need them (and I don't want to define them in each % package which might need them). % \begin{macrocode} \long\def\@gobble#1{} \long\def\@gobbletwo#1#2{} \long\def\@gobblethree#1#2#3{} \long\def\@firstofone#1{#1} \long\def\@firstoftwo#1#2{#1} \long\def\@secondoftwo#1#2{#2} \long\def\ekv@fi@gobble\fi\@firstofone#1{\fi} \long\def\ekv@fi@firstofone\fi\@gobble#1{\fi#1} \long\def\ekv@fi@firstoftwo\fi\@secondoftwo#1#2{\fi#1} \long\def\ekv@fi@secondoftwo\fi\@firstoftwo#1#2{\fi#2} \def\ekv@gobble@mark\ekv@mark{} \long\def\ekv@gobbleto@stop#1\ekv@stop{} \long\def\ekv@gobble@from@mark@to@stop\ekv@mark#1\ekv@stop{} % \end{macrocode} % \end{macro} % As you can see |\ekv@gobbleto@stop| uses a special marker |\ekv@stop|. The % package will use three such markers, the one you've seen already, |\ekv@mark| % and |\ekv@nil|. Contrarily to how for instance \pkg{expl3} does things, we % don't define them, as we don't need them to have an actual meaning. This has % the advantage that if they somehow get expanded -- which should never happen % if things work out -- they'll throw an error directly. % % \begin{macro}[internal] % { % \ekv@ifempty,\ekv@ifempty@,\ekv@ifempty@true,\ekv@ifempty@false, % \ekv@ifempty@true@F,\ekv@ifempty@true@F@gobble, % \ekv@ifempty@true@F@gobbletwo % } % We can test for a lot of things building on an if-empty test, so lets define a % really fast one. Since some tests might have reversed logic (true if something % is not empty) we also set up macros for the reversed branches. % \begin{macrocode} \long\def\ekv@ifempty#1% {% \ekv@ifempty@\ekv@ifempty@A#1\ekv@ifempty@B\ekv@ifempty@true \ekv@ifempty@A\ekv@ifempty@B\@secondoftwo } \long\def\ekv@ifempty@#1\ekv@ifempty@A\ekv@ifempty@B{} \long\def\ekv@ifempty@true\ekv@ifempty@A\ekv@ifempty@B\@secondoftwo#1#2{#1} \long\def\ekv@ifempty@false\ekv@ifempty@A\ekv@ifempty@B\@firstoftwo#1#2{#2} \long\def\ekv@ifempty@true@F\ekv@ifempty@A\ekv@ifempty@B\@firstofone#1{} \long\def\ekv@ifempty@true@F@gobble\ekv@ifempty@A\ekv@ifempty@B\@firstofone#1#2% {} \long\def\ekv@ifempty@true@F@gobbletwo \ekv@ifempty@A\ekv@ifempty@B\@firstofone#1#2#3% {} % \end{macrocode} % \end{macro} % % \begin{macro}[internal] % {\ekv@ifblank,\ekv@ifblank@,\ekv@ifblank@false,\ekv@ifblank@gobbletrue} % The obvious test that can be based on an if-empty is if-blank, meaning a test % checking whether the argument is empty or consists only of spaces. But instead % of building atop |\ekv@ifempty| our version will utilise the fact that the % argument in none of our usages can contain |\ekv@stop| (due to the way we % check for end-of-list), and hence we can use an even faster check. This here % works due to the fact that \TeX\ will read at least one token (or a group) for % an undelimited parameter which might be the end marker of the delimited next % parameter. So if |#1| to |\ekv@ifblank| is indeed blank, |#1| of % |\ekv@ifblank@| will be the placed |\ekv@stop| and |#2| will be anything until % the next |\ekv@stop|. The wrapper |\ekv@ifblank| will not be used by \expkv\ % for speed reasons but \expkvo\ uses it. Also, not only a |TF| variant is % provided but also a rather strange one that assumes that only the |F| branch % is provided and that this branch consists only of a single token. % \begin{macrocode} \long\def\ekv@ifblank#1% {\ekv@ifblank@#1\ekv@stop\ekv@ifblank@false\ekv@stop\@firstoftwo} \long\def\ekv@ifblank@\ekv@mark#1#2\ekv@stop{} \long\def\ekv@ifblank@false\ekv@stop\@firstoftwo#1#2{#2} \def\ekv@ifblank@gobbletrue\ekv@stop#1{} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@ifatmostone} % Our check for at most one group or single non-space token is rather straight % forward. There are in essence three cases. % % If |#1| is blank the auxiliary |\ekv@ifatmostone@| will read % |\ekv@stop|\hspace{0pt}|\ekv@iflabk@false| as |#1#2| and |#3| will be empty. % Leading to the test being true. % % If |#1| has exactly one group or single non-space token the auxiliary will % read that argument plus |\ekv@stop| as |#1#2| and |\ekv@ifblank@false| as % |#3|. Leading to the test being true. % % If |#1| has two or more normal arguments the auxiliary will gobble the first % two as |#1#2| and the possibly empty remainder until the first |\ekv@stop| % as |#3|. Then |\ekv@ifblank@false| kicks in and the test is indeed false. % \begin{macrocode} \long\def\ekv@ifatmostone#1% {\ekv@ifatmostone@#1\ekv@stop\ekv@ifblank@false\ekv@stop\@firstoftwo} \long\def\ekv@ifatmostone@#1#2#3\ekv@stop{} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@ifdefined} % We'll need to check whether something is defined quite frequently, so why not % define a macro that does this. The following test is expandable and pretty % fast. The version with |\lastnamedcs| is the fastest version to test for an % undefined macro I know of (that considers both undefined macros and those with % the meaning |\relax|). % \begin{macrocode} \ekv@if@lastnamedcs {% \long\def\ekv@ifdefined#1{\ifcsname#1\endcsname\ekv@ifdef@\fi\@secondoftwo} \def\ekv@ifdef@\fi\@secondoftwo {% \fi \expandafter\ifx\lastnamedcs\relax \ekv@fi@secondoftwo \fi \@firstoftwo } } {% \long\def\ekv@ifdefined#1% {% \ifcsname#1\endcsname\ekv@ifdef@\fi\ekv@ifdef@false#1\endcsname\relax \ekv@fi@secondoftwo \fi \@firstoftwo } \def\ekv@ifdef@\fi\ekv@ifdef@false{\fi\expandafter\ifx\csname} \long\def\ekv@ifdef@false #1\endcsname\relax\ekv@fi@secondoftwo\fi\@firstoftwo#2#3% {#3} } % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@strip,\ekv@strip@a,\ekv@strip@b,\ekv@strip@c} % We borrow some ideas of \pkg{expl3}'s \pkg{l3tl} to strip spaces % from keys and values. This |\ekv@strip| also strips one level of outer braces % \emph{after} stripping spaces, so an input of | {abc} | becomes |abc| after % stripping. It should be used with |#1| prefixed by |\ekv@mark|. Also this % implementation at most strips \emph{one} space from both sides (which should % be fine most of the time, since \TeX\ reads consecutive spaces as a single one % during tokenisation). % \begin{macrocode} \def\ekv@strip#1% {% \long\def\ekv@strip##1% {% \ekv@strip@a ##1\ekv@nil \ekv@mark#1% #1\ekv@nil }% \long\def\ekv@strip@a##1\ekv@mark#1{\ekv@strip@b##1\ekv@mark}% } \ekv@strip{ } \long\def\ekv@strip@b#1 \ekv@nil{\ekv@strip@c#1\ekv@nil} \long\def\ekv@strip@c\ekv@mark#1\ekv@nil\ekv@mark#2\ekv@nil#3{#3{#1}} % \end{macrocode} % \end{macro} % % \begin{macro}[internal] % {\ekv@strip@key,\ekv@strip@key@a,\ekv@strip@key@b,\ekv@strip@key@c} % Same idea and code as |\ekv@strip|, but the second argument to % |\ekv@strip@key| must be a single token and the result of the stripping will % be |\detokenize|d. % \begin{macrocode} \def\ekv@strip@key#1% {% \long\def\ekv@strip@key##1{\ekv@strip@key@a##1\ekv@nil\ekv@mark#1#1\ekv@nil} \long\def\ekv@strip@key@a##1\ekv@mark#1{\ekv@strip@key@b##1\ekv@mark} } \ekv@strip@key{ } \long\def\ekv@strip@key@b#1 \ekv@nil{\ekv@strip@key@c#1\ekv@nil} \long\def\ekv@strip@key@c\ekv@mark#1\ekv@nil\ekv@mark#2\ekv@nil#3% {\expandafter#3\detokenize{#1}\ekv@mark{#1}} % \end{macrocode} % \end{macro} % % \begin{macro}[internal] % { % \ekv@exparg,\ekv@exparg@, % \ekv@expandedarg,\ekv@fexparg,\ekv@expandafter % \ekv@expargtwice,\ekv@expargtwice@,\ekv@zero % } % To reduce some code doublets while gaining some speed (and also as convenience % for other packages in the family), it is often useful to expand the first % token in a definition once. Let's define a wrapper for this. And while we're % at it, also define a helper for |f|-~and |e|-expansion as well. % % Also, to end a |\romannumeral| expansion, we want to use |\z@|, which is % contained in both plain \TeX\ and \LaTeX, but we use a private name for it to % make it easier to spot and hence easier to manage. % \begin{macrocode} \let\ekv@zero\z@ \long\def\ekv@exparg#1#2% {\ekv@expanded{\ekv@unexpanded{#1}\expandafter}\expandafter{#2}} \long\def\ekv@expandafter#1{\ekv@expanded{\ekv@unexpanded{#1}\expandafter}} \long\def\ekv@exparg@#1#2{#2{#1}}% \long\def\ekv@expandedarg#1#2{\ekv@expanded{\ekv@unexpanded{#1}{#2}}} \long\def\ekv@fexparg#1#2% {% \ekv@expanded{\ekv@unexpanded{#1}\expandafter}\expandafter {\romannumeral`\^^@#2}% } \long\def\ekv@expargtwice#1#2{\expandafter\ekv@expargtwice@\expandafter{#2}{#1}} \def\ekv@expargtwice@{\expandafter\ekv@exparg@\expandafter} % \end{macrocode} % \end{macro} % % \begin{macro}{\ekvcsvloop} % \begin{macro}[internal]{\ekv@csv@loop@active,\ekv@csv@loop@active@end} % An |\ekvcsvloop| will just loop over a csv list in a simple manner. First we % split at active commas (gives better performance this way), next we have to % check whether we're at the end of the list (checking for |\ekv@stop|). If % not we go on splitting at commas of category other. % \begin{macrocode} \begingroup \def\ekvcsvloop#1{% \endgroup \long\def\ekvcsvloop##1##2% {\ekv@csv@loop@active{##1}\ekv@mark##2#1\ekv@stop#1} % \end{macrocode} % This does the same as |\ekv@csv@loop| but for active commas. % \begin{macrocode} \long\def\ekv@csv@loop@active##1##2#1% {% \ekv@gobble@from@mark@to@stop##2\ekv@csv@loop@active@end\ekv@stop \ekv@csv@loop{##1}##2,\ekv@stop,% }% \long\def\ekv@csv@loop@active@end \ekv@stop \ekv@csv@loop##1\ekv@mark\ekv@stop,\ekv@stop,% {}% } % \end{macrocode} % Do the definitions with the weird catcode. % \begin{macrocode} \catcode`\,=13 \ekvcsvloop, % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[internal]{\ekv@csv@loop,\ekv@csv@loop@do,\ekv@csv@loop@end} % We use temporary macros and an |\expandafter| chain to preexpand % |\ekv@strip| here. After splitting at other commas we check again for end % the end of the sublist, check for blank elements which should be ignored, % and else strip spaces and execute the user code (protecting it from further % expanding with |\unexpanded|). % \begin{macrocode} \def\ekv@csv@loop#1% {% \long\def\ekv@csv@loop##1##2,% {% \ekv@gobble@from@mark@to@stop##2\ekv@csv@loop@end\ekv@stop \ekv@ifblank@##2\ekv@stop\ekv@ifblank@gobbletrue \ekv@stop\ekv@csv@loop@blank #1\ekv@csv@loop@do{##1}% }% } \expandafter\ekv@csv@loop\expandafter{\ekv@strip{#2}} \long\def\ekv@csv@loop@do#1#2{\ekv@unexpanded{#2{#1}}\ekv@csv@loop{#2}\ekv@mark} \def\ekv@csv@loop@end#1% {% \long\def\ekv@csv@loop@end \ekv@stop \ekv@ifblank@\ekv@mark\ekv@stop\ekv@stop\ekv@ifblank@gobbletrue \ekv@stop\ekv@csv@loop@blank #1\ekv@csv@loop@do##1% {\ekv@csv@loop@active{##1}\ekv@mark}% } \expandafter\ekv@csv@loop@end\expandafter{\ekv@strip{\ekv@mark\ekv@stop}} \long\expandafter\def\expandafter\ekv@csv@loop@blank \ekv@strip{\ekv@mark#1}\ekv@csv@loop@do#2% {\ekv@csv@loop{#2}\ekv@mark} % \end{macrocode} % \end{macro} % % \begin{macro}{\ekv@name,\ekv@name@set,\ekv@name@key} % The keys will all follow the same naming scheme, so we define it here. % \begin{macrocode} \def\ekv@name@set#1{ekv#1(} \long\def\ekv@name@key#1{#1)} \long\ekv@expandedarg{\def\ekv@name#1#2}% {% \ekv@unexpanded\expandafter{\ekv@name@set{#1}}% \ekv@unexpanded\expandafter{\ekv@name@key{\detokenize{#2}}}% } % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@undefined@set} % We can misuse the macro name we use to expandably store the set-name in a % single token -- since this increases performance drastically, especially for % long set-names -- to throw a more meaningful error message in case a set isn't % defined. The name of |\ekv@undefined@set| is a little bit misleading, as it is % called in either case inside of |\csname|, but the result will be a control % sequence with meaning |\relax| if the set is undefined, hence will break the % |\csname| building the key-macro which will throw the error message. % \begin{macrocode} \def\ekv@undefined@set#1{! expkv Error: Set `#1' undefined.} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@checkvalid} % We place some restrictions on the allowed names, though, namely sets and % keys are not allowed to be empty -- blanks are fine (meaning \mbox{set- % or} key-names consisting of spaces). The |\def\ekv@tmp| gobbles any \TeX\ % prefixes which would otherwise throw errors. This will, however, break the % package if an |\outer| has been gobbled this way. I consider that good, % because keys shouldn't be defined |\outer| anyways. % \begin{macrocode} \protected\ekv@expandedarg{\def\ekv@checkvalid#1#2}% {% \ekv@unexpanded\expandafter{\ekv@ifempty{#1}}% \ekv@unexpanded {{% \def\ekv@tmp{}% \ekv@errm{empty set name not allowed}% }}% {% \ekv@unexpanded\expandafter{\ekv@ifempty{#2}}% \ekv@unexpanded {% {% \def\ekv@tmp{}% \ekv@errm{empty key name not allowed}% }% \@secondoftwo }% }% \ekv@unexpanded{\@gobble}% } % \end{macrocode} % \end{macro} % % \begin{macro}{\ekvifdefined,\ekvifdefinedNoVal} % And provide user-level macros to test whether a key is defined. % \begin{macrocode} \ekv@expargtwice{\long\def\ekvifdefined#1#2}% {\expandafter\ekv@ifdefined\expandafter{\ekv@name{#1}{#2}}} \ekv@expargtwice{\long\def\ekvifdefinedNoVal#1#2}% {\expandafter\ekv@ifdefined\expandafter{\ekv@name{#1}{#2}N}} % \end{macrocode} % \end{macro} % % \begin{macro} % { % \ekvdef,\ekvdefNoVal,\ekvlet,\ekvletNoVal,\ekvletkv,\ekvletkvNoVal, % \ekvdefunknown,\ekvdefunknownNoVal,\ekvletunknown,\ekvletunknownNoVal % } % Set up the key defining macros |\ekvdef| etc. We use temporary macros to set % these up with a few expansions already done. % \begin{macrocode} \def\ekvdef#1#2#3#4#5#6% {% \protected\long\def\ekvdef##1##2##3% {#1{\expandafter\def\csname#2\endcsname####1{##3}#4}}% \protected\long\def\ekvdefNoVal##1##2##3% {#1{\expandafter\def\csname#2N\endcsname{##3}#4}}% \protected\long\def\ekvlet##1##2##3% {#1{\expandafter\let\csname#2\endcsname##3#4}}% \protected\long\def\ekvletNoVal##1##2##3% {#1{\expandafter\let\csname#2N\endcsname##3#4}}% \ekv@expargtwice{\protected\long\def\ekv@defunknown##1##2##3##4}% {% \romannumeral \ekv@exparg {\ekv@zero\ekv@checkvalid{##3}.}% {% \expandafter\expandafter\expandafter \def\expandafter\csname\ekv@name{##3}{}u##1\endcsname##2{##4}% #6% }% }% \ekv@expargtwice{\protected\long\def\ekv@letunknown##1##2##3}% {% \romannumeral \ekv@exparg {\ekv@zero\ekv@checkvalid{##2}.}% {% \expandafter\expandafter\expandafter \let\expandafter\csname\ekv@name{##2}{}u##1\endcsname##3% #5% }% }% \protected\long\def\ekvletkv##1##2##3##4% {% #1% {% \expandafter\let\csname#2\expandafter\endcsname \csname#3\endcsname #4% }% }% \protected\long\def\ekvletkvNoVal##1##2##3##4% {% #1% {% \expandafter\let\csname#2N\expandafter\endcsname \csname#3N\endcsname #4% }% }% } \edef\ekvdefNoVal {% {\ekv@unexpanded\expandafter{\ekv@checkvalid{#1}{#2}}}% {\ekv@unexpanded\expandafter{\ekv@name{#1}{#2}}}% {\ekv@unexpanded\expandafter{\ekv@name{#3}{#4}}}% {% \ekv@unexpanded{\expandafter\ekv@defsetmacro\csname}% \ekv@unexpanded\expandafter{\ekv@undefined@set{#1}\endcsname{#1}}% }% {% \ekv@unexpanded{\expandafter\ekv@defsetmacro\csname}% \ekv@unexpanded\expandafter{\ekv@undefined@set{#2}\endcsname{#2}}% }% {% \ekv@unexpanded{\expandafter\ekv@defsetmacro\csname}% \ekv@unexpanded\expandafter{\ekv@undefined@set{#3}\endcsname{#3}}% }% } \expandafter\ekvdef\ekvdefNoVal \ekv@exparg{\protected\long\def\ekvdefunknown#1#2}% {\ekv@defunknown{}{##1##2##3}{#1}{#2}} \ekv@exparg{\protected\long\def\ekvdefunknownNoVal#1#2}% {\ekv@defunknown{N}{##1##2}{#1}{#2}} \ekv@exparg{\protected\long\def\ekvletunknown#1#2}% {\ekv@letunknown{}{#1}{#2}} \ekv@exparg{\protected\long\def\ekvletunknownNoVal#1#2}% {\ekv@letunknown{N}{#1}{#2}} \let\ekv@defunknown\ekv@undefined \let\ekv@letunknown\ekv@undefined % \end{macrocode} % \end{macro} % % \begin{macro}{\ekvredirectunknown,\ekvredirectunknownNoVal} % \begin{macro}[internal] % { % \ekv@defredirectunknown,\ekv@redirectunknown@aux, % \ekv@redirectunknownNoVal@aux % } % The redirection macros prepare the unknown function by looping over the % provided list of sets and leaving a |\ekv@redirect@kv| or |\ekv@redirect@k| % for each set. Only the first of these internals will receive the \key\ and % \val\ as arguments. % \begin{macrocode} \protected\def\ekv@defredirectunknown#1#2#3#4#5#6% {% \begingroup \edef\ekv@tmp {% \ekvcsvloop#1{#6}% \ekv@unexpanded{#2}% {\ekvcsvloop{}{#5,#6}}% }% \ekv@expargtwice {\endgroup\long#3{#5}}% {\expandafter#4\ekv@tmp\ekv@stop}% } \ekv@exparg{\protected\def\ekvredirectunknown#1#2}% {% \ekv@defredirectunknown \ekv@redirect@kv \ekv@err@redirect@kv@notfound \ekvdefunknown \ekv@redirectunknown@aux {#1}{#2}% } \ekv@exparg{\protected\def\ekvredirectunknownNoVal#1#2}% {% \ekv@defredirectunknown \ekv@redirect@k \ekv@err@redirect@k@notfound \ekvdefunknownNoVal \ekv@redirectunknownNoVal@aux {#1}{#2}% } \def\ekv@redirectunknown@aux#1{#1{##1}{##2}} \def\ekv@redirectunknownNoVal@aux#1{#1{##1}} \let\ekv@defredirectunknown\ekv@undefined % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[internal] % { % \ekv@redirect@k,\ekv@redirect@k@a,\ekv@redirect@k@a@, % \ekv@redirect@k@b,\ekv@redirect@k@c,\ekv@redirect@k@d, % \ekv@redirect@kv,\ekv@redirect@kv@a,\ekv@redirect@kv@a@, % \ekv@redirect@kv@b,\ekv@redirect@kv@c,\ekv@redirect@kv@d % } % The redirect code works by some simple loop over all the sets, which we % already preprocessed in |\ekv@defredirectunknown|. For some optimisation we % blow this up a bit code wise, essentially, all this does is |\ekvifdefined| % or |\ekvifdefinedNoVal| in each set, if there is a match gobble the % remainder of the specified sets and execute the key macro, else go on with % the next set (to which the \key\ and \val\ are forwarded). % % First we set up some code which is different depending on |\lastnamedcs| % being available or not. All this is stored in a temporary macro to have % pre-expanded |\ekv@name| constellations ready. % \begin{macrocode} \def\ekv@redirect@k#1#2#3#4% {% \ekv@if@lastnamedcs {% \def\ekv@redirect@k##1##2##3% {% \ifcsname#1\endcsname\ekv@redirect@k@a\fi ##3{##1}% }% \def\ekv@redirect@k@a\fi{\fi\expandafter\ekv@redirect@k@b\lastnamedcs}% \long\def\ekv@redirect@kv##1##2##3##4% {% \ifcsname#2\endcsname\ekv@redirect@kv@a\fi\@gobble{##1}% ##4{##1}{##2}% }% \def\ekv@redirect@kv@a\fi\@gobble {\fi\expandafter\ekv@redirect@kv@b\lastnamedcs}% } {% \def\ekv@redirect@k##1##2##3% {% \ifcsname#1\endcsname\ekv@redirect@k@a\fi\ekv@redirect@k@a@ #1\endcsname ##3{##1}% }% \def\ekv@redirect@k@a@#3\endcsname{}% \def\ekv@redirect@k@a\fi\ekv@redirect@k@a@ {\fi\expandafter\ekv@redirect@k@b\csname}% \long\def\ekv@redirect@kv##1##2##3##4% {% \ifcsname#2\endcsname\ekv@redirect@kv@a\fi\ekv@redirect@kv@a@ #2\endcsname{##1}% ##4{##1}{##2}% }% \long\def\ekv@redirect@kv@a@#4\endcsname##3{}% \def\ekv@redirect@kv@a\fi\ekv@redirect@kv@a@ {\fi\expandafter\ekv@redirect@kv@b\csname}% }% } % \end{macrocode} % The key name given to this loop will already be |\detokenize|d by |\ekvset|, % so we can safely remove the |\detokenize| here for some performance gain. % \begin{macrocode} \def\ekv@redirect@kv#1\detokenize#2#3\ekv@stop{\ekv@unexpanded{#1#2#3}} \edef\ekv@redirect@kv {% {\expandafter\ekv@redirect@kv\ekv@name{#2}{#1}N\ekv@stop}% {\expandafter\ekv@redirect@kv\ekv@name{#3}{#2}\ekv@stop}% {\expandafter\ekv@redirect@kv\ekv@name{#1}{#2}N\ekv@stop}% {\expandafter\ekv@redirect@kv\ekv@name{#1}{#2}\ekv@stop}% } % \end{macrocode} % Everything is ready to make the real definitions. % \begin{macrocode} \expandafter\ekv@redirect@k\ekv@redirect@kv % \end{macrocode} % The remaining macros here are independent on |\lastnamedcs|, starting from % the |@b| we know that there is a hash table entry, and get the macro as a % parameter. We still have to test whether the macro is |\relax|, depending on % the result of that test we have to either remove the remainder of the % current test, or the remainder of the set list and invoke the macro. % \begin{macrocode} \def\ekv@redirect@k@b#1% {\ifx\relax#1\ekv@redirect@k@c\fi\ekv@redirect@k@d#1} \def\ekv@redirect@k@c\fi\ekv@redirect@k@d#1{\fi} \def\ekv@redirect@k@d#1#2\ekv@stop{#1} \def\ekv@redirect@kv@b#1% {\ifx\relax#1\ekv@redirect@kv@c\fi\ekv@redirect@kv@d#1} \long\def\ekv@redirect@kv@c\fi\ekv@redirect@kv@d#1#2{\fi} \long\def\ekv@redirect@kv@d#1#2#3\ekv@stop{#1{#2}} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@defsetmacro} % In order to enhance the speed the set name given to |\ekvset| will be turned % into a control sequence pretty early, so we have to define that control % sequence. % \begin{macrocode} \edef\ekv@defsetmacro {% \ekv@unexpanded{\ifx#1\relax\edef#1##1}% {% \ekv@unexpanded\expandafter{\ekv@name@set{#2}}% \ekv@unexpanded\expandafter{\ekv@name@key{##1}}% }% \ekv@unexpanded{\fi}% } \ekv@exparg{\protected\def\ekv@defsetmacro#1#2}{\ekv@defsetmacro} % \end{macrocode} % \end{macro} % % \begin{macro}{\ekvifdefinedset} % \begin{macrocode} \ekv@expargtwice{\def\ekvifdefinedset#1}% {\expandafter\ekv@ifdefined\expandafter{\ekv@undefined@set{#1}}} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@ifexp} % We want to be able to include expansion control. This is started by a % specific structure, namely if the stuff to the left of the equals sign % contains a colon followed by a space followed by at least one non-space % token. There is an additional rule namely the contents in front of the % \verb*|: | marker mustn't contain spaces outside of braces, but % unfortunately we can test this only after we did the real split and not as % part of a fast test. The temporary meaning we set up here will get % \tkn{:}{13}\vissp{ } and \tkn{:}{11}\vissp{ } as |#1| and |#2|. % % The real definition will take three arguments (two curried), namely the % un-|\detokenize|d name as |#1|, what should be done if the \expnotation\ % should start as |#2|, and what should be done if no \expnotation\ is found % as |#3|. % \begin{macrocode} \def\ekv@ifexp#1#2% {% % \end{macrocode} % In the following explanations I use \tkn{:}{12}, \tkn{:}{13}, and % \tkn{:}{11}, but I always mean that token followed by a space. % \begin{macro}[internal]{\ekv@ifexp@split@o@or@other} % \tkn{:}{12} splitter also used to test for \tkn{:}{13} and \tkn{:}{11} % \begin{macrocode} \long\def\ekv@ifexp@split@o@or@other ##1: ##2\ekv@stop##3% ##4#1##5\ekv@stop##6% ##7#2##8\ekv@stop##9% {##9##6##3##1\ekv@stop##2}% % \end{macrocode} % \end{macro} % \begin{macro}[internal]{\ekv@ifexp@split@a@or@l} % \tkn{:}{13} splitter also used to test for \tkn{:}{11} % \begin{macrocode} \long\def\ekv@ifexp@split@a@or@l ##1#1##2\ekv@stop##3% ##4#2##5\ekv@stop##6% {##6##3##1\ekv@stop##2}% % \end{macrocode} % \end{macro} % \begin{macro}[internal] % {\ekv@ifexp@split@a,\ekv@ifexp@split@l} % \tkn{:}{13} splitter % \begin{macrocode} \long\def\ekv@ifexp@split@a##1#1##2\ekv@stop##3% {##3##1\ekv@stop##2}% % \end{macrocode} % \tkn{:}{11} splitter % \begin{macrocode} \long\def\ekv@ifexp@split@l##1#2##2\ekv@stop##3% {##3##1\ekv@stop##2}% % \end{macrocode} % \end{macro} % To get good performance in the most common case (standard category codes % apply) we try to split on \tkn{:}{12}, due to the way this split works there % are a few possible outcomes: % \begin{enumerate} % \item |\ekv@ifexp@none| is the first token if no colon was % found at all % \item |\ekv@ifexp@o| is the first token if only \tkn{:}{12} % were part of \key % \item |\ekv@ifexp@a| is put in front of either of the two % aforementioned cases if there was at least one \tkn{:}{13} (in that case % we don't yet know which was the first colon) % \item |\ekv@ifexp@o| is put in front of any of the % aforementioned cases if there was at least one \tkn{:}{11} (in which % case we also don't know yet which was the first colon) % \end{enumerate} % \begin{macrocode} \long\def\ekv@ifexp##1% {% \ekv@ifexp@split@o@or@other ##1\ekv@nil\ekv@stop\ekv@ifexp@o : \ekv@stop\ekv@ifexp@none ##1\ekv@stop\ekv@ifexp@a#1\ekv@stop{}% ##1\ekv@stop\ekv@ifexp@l#2\ekv@stop{}% }% % \end{macrocode} % \begin{macro}[internal] % {\ekv@ifexp@o,\ekv@ifexp@none} % If any of the next two are called we already know the outcome and can % directly expand to it. % \begin{macrocode} \long\def\ekv@ifexp@o##1\ekv@stop {\ekv@ifexp@done{##1}\ekv@mark}% \long\def\ekv@ifexp@none ##1\ekv@nil\ekv@stop\ekv@ifexp@o\ekv@stop ##2##3% {##3}% % \end{macrocode} % \end{macro} % \begin{macro}[internal] % {\ekv@ifexp@a,\ekv@ifexp@a@i,\ekv@ifexp@a@ii} % If this is called we know that there was no \tkn{:}{13}, if the first token % now is |\ekv@ifexp@none| there was no \tkn{:}{12} as well % \begin{macrocode} \def\ekv@ifexp@a##1% {% \ekv@ifexp@a@i ##1\ekv@ifexp@a@ii \ekv@ifexp@none\ekv@ifexp@a@or@o }% \def\ekv@ifexp@a@i##1\ekv@ifexp@none{}% % \end{macrocode} % Easy route, no \tkn{:}{12}, simply grab and pack % \begin{macrocode} \long\def\ekv@ifexp@a@ii \ekv@ifexp@none\ekv@ifexp@a@or@o ##1#1##2\ekv@stop\ekv@ifexp@o\ekv@stop {\ekv@ifexp@done{##1}\ekv@mark##2}% % \end{macrocode} % \end{macro} % \begin{macro}[internal] % { % \ekv@ifexp@a@or@o, % \ekv@ifexp@a@not@o,\ekv@ifexp@a@not@o@, % \ekv@ifexp@o@not@a % } % other route, there is a \tkn{:}{12}, re-split at \tkn{:}{13} % \begin{macrocode} \long\def\ekv@ifexp@a@or@o##1\ekv@stop {% \ekv@ifexp@split@a ##1\ekv@nil\ekv@stop\ekv@ifexp@a@not@o #1\ekv@stop\ekv@ifexp@o@not@a }% % \end{macrocode} % \tkn{:}{13} came earlier than \tkn{:}{12} % \begin{macrocode} \long\def\ekv@ifexp@a@not@o##1\ekv@stop {\ekv@ifexp@a@not@o@{##1}\ekv@mark} \long\def\ekv@ifexp@a@not@o@ ##1##2\ekv@nil#1\ekv@stop\ekv@ifexp@o@not@a {\ekv@ifexp@done{##1}##2: }% % \end{macrocode} % \tkn{:}{12} came earlier than \tkn{:}{13} % \begin{macrocode} \long\def\ekv@ifexp@o@not@a ##1\ekv@nil\ekv@stop\ekv@ifexp@a@not@o\ekv@stop {\ekv@ifexp@done{##1}\ekv@mark}% % \end{macrocode} % \end{macro} % \begin{macro}[internal]{\ekv@ifexp@l,\ekv@ifexp@l@i,\ekv@ifexp@l@ii} % Now this is the most complicated case, if |\ekv@ifexp@l| is % called there are a few possibilities: % \begin{enumerate} % \item |#1| is |\ekv@ifexp@none|: easiest route, only % \tkn{:}{11} was there % \item |#1| is |\ekv@ifexp@o|: complicated route, there was a % \tkn{:}{11} and a \tkn{:}{12} % \item |#1| is |\ekv@ifexp@a| and after that comes % |\ekv@ifexp@none|: more complicated, there was a % \tkn{:}{11} and a \tkn{:}{13} % \item |#1| is |\ekv@ifexp@a| and after that comes % |\ekv@ifexp@o|: cursed route, there were \tkn{:}{11}, % \tkn{:}{12}, and \tkn{:}{13} % \end{enumerate} % \begin{macrocode} \def\ekv@ifexp@l##1% {% \ekv@ifexp@l@i ##1\ekv@ifexp@l@ii \ekv@ifexp@none{}% ##1\ekv@ifexp@l@or@o \ekv@ifexp@o \ekv@ifexp@l@or@a }% \def\ekv@ifexp@l@i ##1\ekv@ifexp@none##2% ##3\ekv@ifexp@o {##2}% % \end{macrocode} % easiest route, just \tkn{:}{11} % \begin{macrocode} \long\def\ekv@ifexp@l@ii \ekv@ifexp@l@or@a##1#2##2\ekv@stop \ekv@ifexp@o\ekv@stop#2\ekv@stop##3% {\ekv@ifexp@done{##1}\ekv@mark##2}% % \end{macrocode} % \end{macro} % \begin{macro}[internal] % { % \ekv@ifexp@l@or@o, % \ekv@ifexp@l@not@o,\ekv@ifexp@l@not@o@, % \ekv@ifexp@o@not@l % } % slightly harder, \tkn{:}{11} or \tkn{:}{12}, re-split at \tkn{:}{11} % \begin{macrocode} \long\def\ekv@ifexp@l@or@o \ekv@ifexp@o\ekv@ifexp@l@or@a ##1\ekv@stop {% \ekv@ifexp@split@l ##1\ekv@nil\ekv@stop\ekv@ifexp@l@not@o #2\ekv@stop\ekv@ifexp@o@not@l }% % \end{macrocode} % \tkn{:}{11} came earlier than \tkn{:}{12} % \begin{macrocode} \long\def\ekv@ifexp@l@not@o##1\ekv@stop {\ekv@ifexp@l@not@o@{##1}\ekv@mark} \long\def\ekv@ifexp@l@not@o@ ##1##2\ekv@nil#2\ekv@stop\ekv@ifexp@o@not@l ##3#2\ekv@stop##4% {\ekv@ifexp@done{##1}##2: ##3}% % \end{macrocode} % \tkn{:}{12} came earlier than \tkn{:}{11} % \begin{macrocode} \long\def\ekv@ifexp@o@not@l ##1\ekv@nil\ekv@stop\ekv@ifexp@l@not@o\ekv@stop ##2#2\ekv@stop##3% {\ekv@ifexp@done{##1}\ekv@mark##2}% % \end{macrocode} % \end{macro} % \begin{macro}[internal] % { % \ekv@ifexp@l@or@a, % \ekv@ifexp@l@or@a@not@o, % \ekv@ifexp@l@not@a,\ekv@ifexp@l@not@a@, % \ekv@ifexp@a@not@l % } % \tkn{:}{13} was in the mix with \tkn{:}{11}, we need to see whether there % was a \tkn{:}{12} as well % \begin{macrocode} \def\ekv@ifexp@l@or@a##1% {% % \end{macrocode} % don't get confused by the name, this gobbles until |@none| % \begin{macrocode} \ekv@ifexp@a@i ##1\ekv@ifexp@l@or@a@not@o \ekv@ifexp@none \ekv@ifexp@l@or@a@or@o }% % \end{macrocode} % phew, no \tkn{:}{12} in the mix, we split at \tkn{:}{13} and see whether an % earlier \tkn{:}{11} is found % \begin{macrocode} \long\def\ekv@ifexp@l@or@a@not@o \ekv@ifexp@none\ekv@ifexp@l@or@a@or@o ##1#1% {% \ekv@ifexp@split@l ##1\ekv@nil\ekv@stop\ekv@ifexp@l@not@a #2\ekv@stop\ekv@ifexp@a@not@l }% \long\def\ekv@ifexp@l@not@a##1\ekv@stop {\ekv@ifexp@l@not@a@{##1}\ekv@mark}% \long\def\ekv@ifexp@l@not@a@ ##1##2\ekv@nil#2\ekv@stop\ekv@ifexp@a@not@l ##3\ekv@stop\ekv@ifexp@o\ekv@stop#2\ekv@stop##4% {\ekv@ifexp@done{##1}##2#1##3}% \long\def\ekv@ifexp@a@not@l ##1\ekv@nil\ekv@stop\ekv@ifexp@l@not@a\ekv@stop ##2\ekv@stop\ekv@ifexp@o\ekv@stop#2\ekv@stop##3% {\ekv@ifexp@done{##1}\ekv@mark##2}% % \end{macrocode} % \end{macro} % \begin{macro}[internal] % { % \ekv@ifexp@l@or@a@or@o,\ekv@ifexp@l@or@a@or@o@i,\ekv@ifexp@l@or@a@or@o@ii, % \ekv@ifexp@l@or@a@or@o@iii,\ekv@ifexp@l@or@a@or@o@iv, % \ekv@ifexp@o@not@l@or@a, % \ekv@ifexp@a@not@l@or@o,\ekv@ifexp@a@not@l@or@o@ % } % ooh no, the ugliest path, we got ourself a \tkn{:}{11}, a \tkn{:}{12}, and a % \tkn{:}{13}, first grab everything left after splitting the first % \tkn{:}{12} and try a \tkn{:}{13} split % \begin{macrocode} \long\def\ekv@ifexp@l@or@a@or@o##1\ekv@stop {% \ekv@ifexp@split@a@or@l ##1\ekv@nil\ekv@stop\ekv@ifexp@a@not@l@or@o #1\ekv@stop\ekv@ifexp@o@not@l@or@a ##1\ekv@stop\ekv@ifexp@l@or@a@or@o@i#2\ekv@stop{}% }% % \end{macrocode} % \tkn{:}{12} splitting was correct % \begin{macrocode} \long\def\ekv@ifexp@o@not@l@or@a ##1\ekv@nil\ekv@stop\ekv@ifexp@a@not@l@or@o\ekv@stop ##2#2\ekv@stop##3% {\ekv@ifexp@done{##1}\ekv@mark##2}% % \end{macrocode} % \tkn{:}{13} split is correct, \tkn{:}{12} has to be reverted % \begin{macrocode} \long\def\ekv@ifexp@a@not@l@or@o##1\ekv@stop {\ekv@ifexp@a@not@l@or@o@{##1}\ekv@mark} \long\def\ekv@ifexp@a@not@l@or@o@ ##1##2\ekv@nil##3#2\ekv@stop##4% {\ekv@ifexp@done{##1}##2: ##3}% % \end{macrocode} % there is still a \tkn{:}{11} left, we need to take care of \tkn{:}{13} as % well, but \tkn{:}{12} was wrong % \begin{macrocode} \def\ekv@ifexp@l@or@a@or@o@i##1% {% \ekv@ifexp@l@or@a@or@o@ii ##1\ekv@ifexp@l@or@a@or@o@iii \ekv@ifexp@o@not@l@or@a \ekv@ifexp@why }% \def\ekv@ifexp@l@or@a@or@o@ii ##1\ekv@ifexp@o@not@l@or@a {}% % \end{macrocode} % at least it's not absolutely the worst, \tkn{:}{11} is correct, revert the % \tkn{:}{12} split % \begin{macrocode} \long\def\ekv@ifexp@l@or@a@or@o@iii \ekv@ifexp@o@not@l@or@a\ekv@ifexp@why ##1#2% {\ekv@ifexp@l@or@a@or@o@iv{##1}\ekv@mark}% \long\def\ekv@ifexp@l@or@a@or@o@iv ##1##2\ekv@nil\ekv@stop\ekv@ifexp@a@not@l@or@o\ekv@stop #2\ekv@stop##3##4#2\ekv@stop##5% {\ekv@ifexp@done{##1}##2: ##4}% % \end{macrocode} % \end{macro} % \begin{macro}[internal] % { % \ekv@ifexp@why, % \ekv@ifexp@why@l,\ekv@ifexp@why@l@i,\ekv@ifexp@why@l@ii, % \ekv@ifexp@why@a % } % why have you forsaken me? We know \tkn{:}{12} was wrong, but now we have % something that might be correctly split at \tkn{:}{13}, but might as well be % not % \begin{macrocode} \long\def\ekv@ifexp@why##1\ekv@stop {% \ekv@ifexp@split@l ##1\ekv@nil\ekv@stop\ekv@ifexp@why@l #2\ekv@stop\ekv@ifexp@why@a }% % \end{macrocode} % \tkn{:}{11} is correct, rebuild stuff undoing the wrong \tkn{:}{13} split % \begin{macrocode} \long\def\ekv@ifexp@why@l##1\ekv@stop {\ekv@ifexp@why@l@i{##1}\ekv@mark} \long\def\ekv@ifexp@why@l@i ##1##2\ekv@nil#2\ekv@stop\ekv@ifexp@why@a {\ekv@ifexp@why@l@ii{##1}##2#1} % \end{macrocode} % and undoing the wrong \tkn{:}{12} split % \begin{macrocode} \long\def\ekv@ifexp@why@l@ii ##1##2\ekv@nil#2\ekv@stop##3##4#2\ekv@stop##5% {\ekv@ifexp@done{##1}##2: ##4}% % \end{macrocode} % \tkn{:}{13} is correct, we know there is a \tkn{:}{11} hiding somewhere, so % we don't need to protect against brace strip using a two-step grab here, % just undoing the wrong \tkn{:}{12} split is enough % \begin{macrocode} \long\def\ekv@ifexp@why@a ##1\ekv@nil\ekv@stop\ekv@ifexp@why@l\ekv@stop ##2\ekv@nil#2\ekv@stop##3##4#2\ekv@stop##5% {\ekv@ifexp@done{##1}\ekv@mark##2: ##4}% % \end{macrocode} % \end{macro} % \begin{macro}[internal] % { % \ekv@ifexp@done,\ekv@ifexp@done@, % \ekv@ifexp@done@test, % \ekv@ifexp@panic % } % once the colon split is done we need to check that there are no spaces in % the now split of part, if there are \emph{panic} (we did all of this for % nothing), else we're finally completely done with the splitting business. % \begin{macrocode} \ekv@exparg{\long\def\ekv@ifexp@done##1##2\ekv@nil}% {% \@firstofone {\ekv@ifexp@done@test##1\ekv@nil\ekv@ifexp@panic} \ekv@nil{}% ##2\ekv@stop\ekv@ifexp@done@{##1}{##2}\ekv@stop\@secondoftwo } \long\def\ekv@ifexp@done@test##1 ##2\ekv@nil##3##4##5##6\ekv@stop{##3} \ekv@exparg{\long\def\ekv@ifexp@done@##1##2\ekv@stop\@secondoftwo##3}% {\ekv@strip{##2}{##3{##1}}}% % \end{macrocode} % Panic in this case means give up on expansion parsing, instead the normal % action that would've been done if the expansion mark isn't found is % executed. % \begin{macrocode} \long\def\ekv@ifexp@panic##1\@secondoftwo##2##3{##3} } % \end{macrocode} % \end{macro} % We set up the strange category codes for colons and do the real definition % after the temporary one. % \begin{macrocode} \begingroup \catcode`\~=13 \lccode`\~=`\: \catcode`\z=11 \lccode`\z=`\: \lowercase{\endgroup \ekv@ifexp{~ }{z }} % \end{macrocode} % \end{macro} % % \begin{macro}{\ekvset} % Set up |\ekvset|, which should not be affected by active commas and equal % signs. The equal signs are a bit harder to cope with and we'll do that later, % but the active commas can be handled by just doing two comma-splitting loops % one at actives one at others. That's why we define |\ekvset| here with a % temporary meaning just to set up the things with two different category codes. % |#1| will be a \texttt{,\textsubscript{13}} and |#2| will be a % \texttt{=\textsubscript{13}}. % \begin{macrocode} \begingroup \def\ekvset#1#2{% \endgroup \ekv@exparg{\long\def\ekvset##1##2}% {% \expandafter\expandafter\expandafter \ekv@set\expandafter\csname\ekv@undefined@set{##1}\endcsname \ekv@mark##2#1\ekv@stop#1{}% } % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@set} % |\ekv@set| will split the \kv\ list at active commas. Then it has to check % whether there were unprotected other commas and resplit there. % \begin{macrocode} \long\def\ekv@set##1##2#1% {% % \end{macrocode} % Test whether we're at the end, if so invoke |\ekv@endset|, % \begin{macrocode} \ekv@gobble@from@mark@to@stop##2\ekv@endset\ekv@stop % \end{macrocode} % else go on with other commas. % \begin{macrocode} \ekv@set@other##1##2,\ekv@stop,% } % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@endset} % |\ekv@endset| is a hungry little macro. It will eat everything that remains % of |\ekv@set| and unbrace the sneaked stuff. % \begin{macrocode} \long\def\ekv@endset\ekv@stop\ekv@set@other##1\ekv@mark\ekv@stop,\ekv@stop,##2% {##2} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@eq@other@or@active,\ekv@eq@active} % Splitting at equal signs will be done in a way that checks whether there is % an equal sign and splits at the same time. This gets quite messy and the % code might look complicated, but this is pretty fast (faster than first % checking for an equal sign and splitting if one is found). The splitting % code will be adapted for |\ekvset| and |\ekvparse| to get the most speed, % but some of these macros don't require such adaptions. % |\ekv@eq@other@or@active| and |\ekv@eq@active| will split the argument at % the first equal sign. |\ekv@eq@active| will insert the macro which comes % after the first following |\ekv@mark|, while |\ekv@eq@other@or@active| will % also check for an active equals sign or none. % Usage should look like this: % \begin{syntaxexample*} % |\ekv@eq@other@or@active| % \indent|#1\ekv@nil\ekv@mark|\meta{code for \tkn{=}{12}} % \indent\tkn{=}{12}|\ekv@mark|\meta{code for no equals sign} % \indent|#1\ekv@mark|\meta{code for \tkn{=}{13} or mixed} % \indent\tkn{=}{13}|\ekv@mark{}| % |\ekv@eq@active| % \indent|#1\ekv@nil\ekv@mark|\meta{code for \tkn{=}{13}} % \indent\tkn{=}{13}|\ekv@mark|\meta{code for no \tkn{=}{13}} % \end{syntaxexample*} % To prevent accidental brace stripping |#1| should be handed in with a % leading |\ekv@mark|, also that's what the |\ekv@nil| after the first |#1| is % used for. In |\ekv@eq@other@or@active| four cases are distinguished: % \begin{enumerate} % \item % Only equals signs of category 12 are found, then \meta{code for % \tkn{=}{12}} will be inserted. % \item % No equals sign is found, then \meta{code for no equals sign} will be % inserted. % \item % Only equals signs of category 13 are found, then \meta{code for % \tkn{=}{13} or mixed} will be inserted, directly followed by % \meta{code for no equals sign}. % \item % Equals signs of categories 12 and 13 are found, then \meta{code for % \tkn{=}{13} or mixed} directly followed by \meta{code for \tkn{=}{12}} % will be inserted. % \end{enumerate} % This allows for fast branching based on \TeX's argument grabbing rules and % we don't have to split after the branching if the equal sign was there. % \begin{macrocode} \long\def\ekv@eq@other@or@active ##1=##2\ekv@mark##3% ##4#2##5\ekv@mark##6% {##6##3##1\ekv@stop\ekv@mark##2} \long\def\ekv@eq@other##1=##2\ekv@mark##3{##3##1\ekv@stop\ekv@mark##2} \long\def\ekv@eq@active##1#2##2\ekv@mark##3{##3##1\ekv@stop\ekv@mark##2} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@set@other,\ekv@set@next@other} % The macro |\ekv@set@other| is guaranteed to get only single \kv\ pairs. % \begin{macrocode} \long\def\ekv@set@other##1##2,% {% % \end{macrocode} % First we test whether we're done. % \begin{macrocode} \ekv@gobble@from@mark@to@stop##2\ekv@endset@other\ekv@stop % \end{macrocode} % If not we split at the equal sign of category other. % \begin{macrocode} \ekv@eq@other@or@active ##2\ekv@nil\ekv@mark\ekv@set@eq@other =\ekv@mark\ekv@set@noeq ##2\ekv@mark\ekv@set@eq@active #2\ekv@mark{}% % \end{macrocode} % And put the set name after the splitting. % \begin{macrocode} ##1% \ekv@mark } % \end{macrocode} % The second macro is used as a shortcut to gobble two arguments and do the % same as a following |\ekv@set@other|. % \begin{macrocode} \ekv@exparg{\long\def\ekv@set@next@other##1##2\ekv@set@other##3##4,}% {\ekv@set@other{##3}{##4},} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@endset@other} % Breaking the current inner loop for \tkn{,}{12} is done by gobbling all the % remaining tokens and grabbing the next split at an active comma % (incorporating the next |\ekv@set| call). % \begin{macrocode} \ekv@exparg{\long\def\ekv@endset@other \ekv@stop\ekv@eq@other@or@active \ekv@mark\ekv@stop\ekv@nil\ekv@mark\ekv@set@eq@other =\ekv@mark\ekv@set@noeq \ekv@mark\ekv@stop\ekv@mark\ekv@set@eq@active#2\ekv@mark##1% ##2##3#1}% {\ekv@set{##2}{##3}#1} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@set@eq@other} % If this gets called we know that there is no \tkn{=}{13}, hence are done % with the splitting business. This doesn't even need much clean up, we can % just strip the \key-name and forward it to |\ekv@set@pair|. % \begin{macrocode} \ekv@exparg{\long\def\ekv@set@eq@other##1\ekv@stop}% {\ekv@strip@key{##1}\ekv@set@pair} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@set@if@noeq} % In the case that there was at least one \tkn{=}{13} we need a way to know % whether there also was a \tkn{=}{12}. This here can be used to check this by % only looking for |\ekv@set@noeq|. % \begin{macrocode} \def\ekv@set@if@noeq##1\ekv@set@noeq{} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@set@eq@active,\ekv@set@eq@active@} % The first token after this will either be |\ekv@set@noeq| or % |\ekv@set@eq@other|. We test this and branch accordingly. % \begin{macrocode} \def\ekv@set@eq@active##1% {\ekv@set@if@noeq##1\ekv@set@eq@active@\ekv@set@noeq\ekv@set@eq@mixed} % \end{macrocode} % Since we know that there was no \tkn{=}{12} when the next macro is called we % can simply do the correct split without any checks and forward to % |\ekv@set@pair|. % \begin{macrocode} \ekv@exparg{\long\def\ekv@set@eq@active@ \ekv@set@noeq\ekv@set@eq@mixed ##1#2##2\ekv@mark \ekv@set@eq@other\ekv@stop\ekv@mark#2\ekv@mark##3}% {\ekv@strip@key{##1}\ekv@set@pair\ekv@mark##2} % \end{macrocode} % \end{macro} % % \begin{macro}[internal] % {\ekv@set@eq@mixed,\ekv@set@eq@mixed@o,\ekv@set@mixed@a} % In the mixed case we grab until the first split of \tkn{=}{12} already done, % and resplit at \tkn{=}{13} using the conditonal splitter described earlier. % \begin{macrocode} \long\def\ekv@set@eq@mixed##1\ekv@stop {% \ekv@eq@active##1\ekv@nil\ekv@mark\ekv@set@eq@mixed@a #2\ekv@mark\ekv@set@eq@mixed@o } % \end{macrocode} % If there actually was no \tkn{=}{13} before the first \tkn{=}{12} everything % was fine. We pick up our first split and remove the gibberish left by the % conditional splitter. % \begin{macrocode} \ekv@exparg{\long\def\ekv@set@eq@mixed@o ##1\ekv@nil\ekv@mark\ekv@set@eq@mixed@a\ekv@stop\ekv@mark ##2\ekv@nil#2\ekv@mark##3}% {\ekv@strip@key{##1}\ekv@set@pair##2\ekv@nil} % \end{macrocode} % |\ekv@set@eq@mixed@a| will trigger if before the first \tkn{=}{12} there was % already a \tkn{=}{13}. So we use the new split and revert the erroneous % split at \tkn{=}{12}. % \begin{macrocode} \ekv@exparg{\long\def\ekv@set@eq@mixed@a ##1\ekv@stop ##2\ekv@nil#2\ekv@mark\ekv@set@eq@mixed@o\ekv@mark ##3#2\ekv@mark##4}% {\ekv@strip@key{##1}\ekv@set@pair##2=##3} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@set@noeq,\ekv@set@was@blank} % If there was no equals sign the current element might in fact be blank. % Blank elements are ignored, hence we need to check for that, else we can % call |\ekv@set@key|. % \begin{macrocode} \ekv@expandedarg {% \long\def\ekv@set@noeq ##1\ekv@nil\ekv@mark\ekv@set@eq@other\ekv@stop\ekv@mark }% {% \ekv@unexpanded {% \ekv@ifblank@##1\ekv@stop\ekv@ifblank@gobbletrue \ekv@stop\ekv@set@was@blank }% \ekv@unexpanded\expandafter{\ekv@strip@key{##1}\ekv@set@key}% } % \end{macrocode} % If in fact the element was blank we remove the |\ekv@set@key| call and % instead do the next iteration of |\ekv@set@other|. % \begin{macrocode} \ekv@exparg{\long\expandafter\def\expandafter\ekv@set@was@blank \ekv@strip@key{\ekv@mark##1}\ekv@set@key ##2##3,}% {\ekv@set@other{##2}{##3},} % \end{macrocode} % \end{macro} % % \begin{macro}{\ekvbreak,\ekvbreakPreSneak,\ekvbreakPostSneak} % Provide macros that can completely stop the parsing of |\ekvset|, who knows % what it'll be useful for. % \begin{macrocode} \long\def\ekvbreak##1##2\ekv@stop#1##3{##1} \long\def\ekvbreakPreSneak ##1##2\ekv@stop#1##3{##1##3} \long\def\ekvbreakPostSneak##1##2\ekv@stop#1##3{##3##1} % \end{macrocode} % \end{macro} % % \begin{macro}{\ekvsneak,\ekvsneakPre} % One last thing we want to do for |\ekvset| is to provide macros that just % smuggle stuff after |\ekvset|'s effects. % \begin{macrocode} \long\def\ekvsneak##1##2\ekv@stop#1##3{##2\ekv@stop#1{##3##1}} \long\def\ekvsneakPre##1##2\ekv@stop#1##3{##2\ekv@stop#1{##1##3}} % \end{macrocode} % \end{macro} % % \begin{macro}{\ekvparse} % Additionally to the |\ekvset| macro we also want to provide an |\ekvparse| % macro, that has the same scope as |\keyval_parse:NNn| from \pkg{expl3}. % This is pretty analogue to the |\ekvset| implementation, we just put an % |\unexpanded| here and there instead of other macros to stop the |\expanded| % on our output. The |\unexpanded\expanded{{...}}| ensures that the material % is in an alignment safe group at all time, and that it doesn't expand any % further in an |\edef| or |\expanded| context. % \begin{macrocode} \long\def\ekvparse##1##2##3% {% \ekv@unexpanded\ekv@expanded {{\ekv@parse{##1}{##2}\ekv@mark##3#1\ekv@stop#1}}% } % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@parse} % \begin{macrocode} \long\def\ekv@parse##1##2##3#1% {% \ekv@gobble@from@mark@to@stop##3\ekv@endparse\ekv@stop \ekv@parse@other{##1}{##2}##3,\ekv@stop,% } % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@endparse} % \begin{macrocode} \long\def\ekv@endparse\ekv@stop\ekv@parse@other##1\ekv@mark\ekv@stop,\ekv@stop,% {} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@parse@other} % \begin{macrocode} \long\def\ekv@parse@other##1##2##3,% {% \ekv@gobble@from@mark@to@stop##3\ekv@endparse@other\ekv@stop \ekv@eq@other@or@active ##3\ekv@nil\ekv@mark\ekv@parse@eq@other =\ekv@mark\ekv@parse@noeq ##3\ekv@mark\ekv@parse@eq@active#2\ekv@mark{}% {##1}{##2}% \ekv@mark } % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@endparse@other} % \begin{macrocode} \ekv@exparg{\long\def\ekv@endparse@other \ekv@stop\ekv@eq@other@or@active \ekv@mark\ekv@stop\ekv@nil\ekv@mark\ekv@parse@eq@other =\ekv@mark\ekv@parse@noeq \ekv@mark\ekv@stop\ekv@mark\ekv@parse@eq@active#2\ekv@mark##1% ##2##3##4#1}% {\ekv@parse{##2}{##3}{##4}#1} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@parse@eq@other} % \begin{macrocode} \ekv@exparg{\long\def\ekv@parse@eq@other##1\ekv@stop}% {\ekv@strip{##1}\ekv@parse@pair}% % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@parse@if@noeq} % \begin{macrocode} \def\ekv@parse@if@noeq##1\ekv@parse@noeq{} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@parse@eq@active,\ekv@parse@eq@active@} % \begin{macrocode} \def\ekv@parse@eq@active##1% {% \ekv@parse@if@noeq##1\ekv@parse@eq@active@\ekv@parse@noeq \ekv@parse@eq@mixed } \ekv@exparg{\long\def\ekv@parse@eq@active@ \ekv@parse@noeq\ekv@parse@eq@mixed ##1#2##2\ekv@mark \ekv@parse@eq@other\ekv@stop\ekv@mark#2\ekv@mark##3}% {\ekv@strip{##1}\ekv@parse@pair\ekv@mark##2} % \end{macrocode} % \end{macro} % % \begin{macro}[internal] % {\ekv@parse@eq@mixed,\ekv@parse@eq@mixed@o,\ekv@parse@eq@mixed@a} % \begin{macrocode} \long\def\ekv@parse@eq@mixed##1\ekv@stop {% \ekv@eq@active##1\ekv@nil\ekv@mark\ekv@parse@eq@mixed@a #2\ekv@mark\ekv@parse@eq@mixed@o } \ekv@exparg{\long\def\ekv@parse@eq@mixed@a ##1\ekv@stop ##2\ekv@nil#2\ekv@mark\ekv@parse@eq@mixed@o\ekv@mark ##3#2\ekv@mark##4}% {\ekv@strip{##1}\ekv@parse@pair##2=##3} \ekv@exparg{\long\def\ekv@parse@eq@mixed@o ##1\ekv@nil\ekv@mark\ekv@parse@eq@mixed@a\ekv@stop\ekv@mark ##2\ekv@nil#2\ekv@mark##3}% {\ekv@strip{##1}\ekv@parse@pair##2\ekv@nil} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@parse@noeq,\ekv@parse@was@blank} % \begin{macrocode} \ekv@expandedarg {% \long\def\ekv@parse@noeq ##1\ekv@nil\ekv@mark\ekv@parse@eq@other\ekv@stop\ekv@mark }% {% \ekv@unexpanded {% \ekv@ifblank@##1\ekv@stop\ekv@ifblank@gobbletrue \ekv@stop\ekv@parse@was@blank }% \ekv@unexpanded\expandafter{\ekv@strip{##1}\ekv@parse@key}% } \ekv@exparg{\long\expandafter\def\expandafter\ekv@parse@was@blank \ekv@strip{\ekv@mark##1}\ekv@parse@key ##2##3##4,}% {\ekv@parse@other{##2}{##3}{##4},} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@parse@pair,\ekv@parse@pair@} % \begin{macrocode} \ekv@exparg{\long\def\ekv@parse@pair##1##2\ekv@nil}% {\ekv@strip{##2}\ekv@parse@pair@{##1}} \ekv@exparg{\long\def\ekv@parse@pair@##1##2##3##4}% {% \ekv@ifexp{##2}% {\ekv@expansion@parse@pair{##1}{##4}}% {\ekv@unexpanded{##4{##2}{##1}}}% \ekv@parse@other{##3}{##4}% } % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@parse@key} % \begin{macrocode} \ekv@exparg{\long\def\ekv@parse@key##1##2}% {% \ekv@ifexp{##1}% {\ekv@expansion@parse@key{##2}}% {\ekv@unexpanded{##2{##1}}}% \ekv@parse@other{##2}% } % \end{macrocode} % \end{macro} % % Finally really setting things up with |\ekvset|'s temporary meaning: % \begin{macrocode} } \catcode`\,=13 \catcode`\==13 \ekvset,= % \end{macrocode} % % \begin{macro}{\ekvsetSneaked} % This macro can be defined just by expanding |\ekvsneak| once after expanding % |\ekvset|. To expand everything as much as possible early on we use a % temporary definition. % \begin{macrocode} \edef\ekvsetSneaked {% \ekv@unexpanded{\ekvsneak{#2}}% \ekv@unexpanded\expandafter{\ekvset{#1}{#3}}% } \ekv@expargtwice{\long\def\ekvsetSneaked#1#2#3}{\ekvsetSneaked} % \end{macrocode} % \end{macro} % % \begin{macro}{\ekvchangeset} % Provide a macro that is able to switch out the current \set\ in |\ekvset|. % This operation allows something similar to \pkg{pgfkeys}'s % \texttt{\meta{key}/.cd} mechanism. However this operation can be more % expensive than |/.cd| as we can't just redefine some token to reflect this, % but have to switch out the set expandably, so this works similar to the % |\ekvsneak| macros reading and reinserting things, but it only has to read and % reinsert the remainder of the current key's replacement code. % \begin{macrocode} \ekv@exparg{\def\ekvchangeset#1}% {% \expandafter\expandafter\expandafter \ekv@changeset\expandafter\csname\ekv@undefined@set{#1}\endcsname\ekv@empty } % \end{macrocode} % \begin{macro}[internal]{\ekv@changeset} % This macro does the real change-out of |\ekvchangeset|. |#2| will have a % leading |\ekv@empty| so that braces aren't stripped accidentally, but that % will not hurt and just expand to nothing in one step. % \begin{macrocode} \long\def\ekv@changeset#1#2\ekv@set@other#3{#2\ekv@set@other#1} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\ekvmorekv} % |\ekvmorekv| injects additional keys for consideration without needing a % nested |\ekvset|. The issue we're facing here is that we can only inject % after the next |\ekv@set@other| to not destroy the order of things, but in % theory the argument to |\ekvmorekv| could contain an active comma. Now we % have two options: % \begin{enumerate} % \item reread all keys until the end of the current |\ekv@set@other| loop % to change the commas there to an active one and insert |\ekv@set| % instead % \item loop over the argument of |\ekvmorekv| to remove all top-level % active commas and replace them with ones of category 12. % \end{enumerate} % The following implements the second approach. We use a temporary definition % of |\ekvmorekv| to get us |#1| for active commas. For the comma replacement % we set up a small loop. The |\ekv@empty| at the end of |\ekvmorekv|'s % definition protects against accidental brace loss in user code. % \begin{macrocode} \def\ekvmorekv#1% {% \long\def\ekvmorekv##1% {% \expandafter\ekv@morekv\ekv@expanded {{\ekv@morekv@loop\ekv@empty##1\ekv@stop\ekv@morekv@done#1}}% \ekv@empty }% % \end{macrocode} % \begin{macro}[internal]{\ekv@parse@more,\ekv@parse@more@} % For the expansion control we also need a way to support reinsertion in % |\ekvparse|. Since there no user code is executed this is an internal macro. % It works in the same way but the argument order exchange is different. Also, % since this is only used internally, we know it is safe to omit the trailing % |\ekv@empty|. % \begin{macrocode} \long\def\ekv@parse@more##1\@gobble##2% {% \expandafter\ekv@parse@more@\ekv@expanded {{\ekv@morekv@loop\ekv@empty##1\ekv@stop\ekv@morekv@done#1}}% }% \long\def\ekv@parse@more@##1\ekv@parse@other##2##3\ekv@mark {\ekv@parse@other{##2}{##3}\ekv@mark##1,}% % \end{macrocode} % \end{macro} % \begin{macro}[internal]{\ekv@morekv} % This is just a simple change of argument order, injecting the new comma % separated list after the current |\ekv@set@other| call. % \begin{macrocode} \long\def\ekv@morekv##1##2\ekv@set@other##3\ekv@mark {##2\ekv@set@other##3\ekv@mark##1,} % \end{macrocode} % \end{macro} % \begin{macro}[internal] % {\ekv@morekv@loop,\ekv@morekv@done,\ekv@morekv@wrap} % And here is the heavy lifting of the comma replacement. Each list element % until the next active comma is read and left as an argument for % |\ekv@morekv@wrap|, that will remove the leading |\ekv@empty|. The trick for % a fast end of the loop is that |\ekv@morekv@wrap| will read until the next % |\ekv@stop|, of which an additional one is put before |\ekv@morekv@done| so % that |wrap| will wrap the real end of the list and then |done| removes the % excess code. % \begin{macrocode} \long\def\ekv@morekv@loop##1#1% {\ekv@morekv@wrap##1\ekv@stop,\ekv@morekv@loop\ekv@empty}% \long\def\ekv@morekv@wrap##1\ekv@stop{\ekv@unexpanded\expandafter{##1}}% \def\ekv@morekv@done\ekv@stop,\ekv@morekv@loop\ekv@empty{}% } \begingroup\catcode`\,=13 \@firstofone{\endgroup\ekvmorekv,} % \end{macrocode} % \end{macro} % \end{macro} % % % \begin{macro}[internal] % { % \ekv@def@expansion@rule,\ekv@def@expansion@rule@ea, % \ekv@expansion@rule@,\ekv@expansion@csname % } % All expansion rules share the same basic structure, they do their expansion % step and then call |\ekv@expansion@rule@| (this could be done faster by % letting each rule build the macro for the next rule in |\csname|, but that % would require a more complex argument grabbing structure of the rules, and % we'd need to use |\expanded{\unexpanded{\csname ...\endcsname}\expandafter}| % or similar to not do the expansion steps of the \val\ inside of |\csname|). % As a result of this the \val\ needs to be grabbed twice per expansion step. % \begin{macrocode} \protected\def\ekv@def@expansion@rule#1#2#3#4% {% \long\expandafter\def\csname ekv@expansion@rule@#1\endcsname##1#2% {#3\ekv@expansion@rule@#4}% } \protected\def\ekv@def@expansion@rule@ea#1#2% {\ekv@def@expansion@rule{#1}{#2}\expandafter} % \end{macrocode} % Rules follow this naming scheme. Note that for an undefined rule an error is % thrown and the result of the |\csname| is |\ekv@expansion@rule@|. % \begin{macrocode} \long\def\ekv@expansion@csname#1\ekv@stop {% ekv@expansion@rule@% \ifcsname ekv@expansion@rule@#1\endcsname #1% \else \ekv@err@undefined@expansion{#1}% \fi } % \end{macrocode} % This auxiliary macro simply builds the next rule, it is used to start an % expansion chain, as well as for each defined or undefined rule. % \begin{macrocode} \long\def\ekv@expansion@rule@#1#2% {\csname\expandafter\ekv@expansion@csname\string#2\ekv@stop\endcsname{#1}} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@expansion@rule@\ekv@mark} % The expansion chain is ended by an internal rule that behaves very different % from the others. It'll test whether the |r|-rule was used (in which case the % third argument will not be empty, and also execute that reinsertion) or grab % the code for the next step after the expansion. % \begin{macrocode} \ekv@exparg {% \long\expandafter \def\csname ekv@expansion@rule@\string\ekv@mark\endcsname #1\ekv@stop#2#3#4#5% }% {% \romannumeral\ekv@exparg{\expandafter\ekv@zero\ekv@ifempty{#3}{#5{#2}{#1}}}% {\ekv@ifempty{#2}{#4{#1}}{\ekv@err@val@no@reinsert{#2}}}% } % \end{macrocode} % \end{macro} % % \begin{macro}[internal] % { % \ekv@expansion@rule@o,\ekv@expansion@rule@e,\ekv@expansion@rule@c, % \ekv@expansion@rule@f,\ekv@expansion@rule@V,\ekv@expansion@rule@v, % \ekv@expansion@rule@s,\ekv@expansion@rule@b,\ekv@expansion@rule@\r, % \ekv@expansion@rule@g,\ekv@expansion@rule@p,\ekv@expansion@rule@P, % \ekv@expansion@rule@r,\ekv@expansion@rule@R % } % All the expansion rules are executed inside a |\csname| construct, so they % have to issue an |\endcsname| after the intended expansion took place. I % guess the code is pretty straight forward here. % \begin{macrocode} \ekv@def@expansion@rule@ea{o}{}{\expandafter{#1}} \ekv@def@expansion@rule@ea{e}{}{\ekv@expanded{{#1}}} \ekv@def@expansion@rule@ea{c}{}{\csname#1\endcsname} \ekv@def@expansion@rule@ea{f}{}{\expandafter{\romannumeral`\^^@#1}} \ekv@exparg{\ekv@def@expansion@rule{s}{}}{\ekv@strip{\ekv@mark#1}}{} \ekv@def@expansion@rule{b}{}{}{{{#1}}} \ekv@def@expansion@rule{\string\r}{#2\ekv@stop#3#4}{}{{#1}#2\ekv@stop{#3}{#4r}} \ekv@def@expansion@rule@ea{g}{}{\expandafter{\@gobble#1}} \ekv@def@expansion@rule{p}{#2}{}{{#2#1}} \ekv@def@expansion@rule{P}{#2}{}{{#1#2}} % \end{macrocode} % The |V| and |v| rules are a bit more complicated. They use some auxiliaries % but otherwise should be more or less obvious as well. The |v| one uses some % expansion to get a more meaningful error message in case the resulting % control sequence would be undefined (without actually using |\csname|, to % not accidentally define anything as |\relax|). % \begin{macrocode} \long\def\ekv@expansion@rule@V#1% {% \ifx\relax#1\ekv@err@erroneous@variable{#1}\ekv@expansion@@clean@V\fi \ekv@expansion@@V{#1}% } \ekv@expandedarg{\long\def\ekv@expansion@rule@v#1}% {% \ekv@unexpanded{\ekv@ifdefined{#1}% {\expandafter\ekv@expansion@@V\csname#1\endcsname}}% {% \ekv@unexpanded{\expandafter\ekv@err@erroneous@variable\ekv@expanded}% {{\expandafter\@gobble\string\\#1}}% \ekv@unexpanded{\ekv@expansion@rule@}{}% }% } \ekv@exparg{\long\def\ekv@expansion@rule@r#1#2\ekv@stop#3#4}% {\ekv@expansion@rule@v{#1}#2\ekv@stop{#3}{#4r}} \ekv@exparg{\long\def\ekv@expansion@rule@R#1#2\ekv@stop#3#4}% {\ekv@expansion@rule@V{#1}#2\ekv@stop{#3}{#4r}} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@expansion@@V,\ekv@expansion@@clean@V} % The actual |V| evaluation is pretty much the same as in \pkg{expl3}, but we % need to put braces around the expansion result, hence branch slightly % differently. In general, a macro will temporarily have the meaning of % |\relax| if hit by |\noexpand| and hence the \cs[no-index]{ifx} test will % result in false (as the meaning isn't the same now), so we can tell % whether it would expand directly. Else we assume this is a register type and % use |\the|. % \begin{macrocode} \long\def\ekv@expansion@@V#1% {% \expandafter\ifx\noexpand#1#1% \ekv@fi@firstoftwo \fi \@secondoftwo {\expandafter\ekv@expansion@rule@\expandafter{\the#1}}% {\expandafter\ekv@expansion@rule@\expandafter{#1}}% } \long\def\ekv@expansion@@clean@V\fi\ekv@expansion@@V#1% {\fi\ekv@expansion@rule@{}} % \end{macrocode} % \end{macro} % % \begin{macro}[internal] % {\ekv@expansion@rule@\key,\ekv@expansion@rule@\ekv@key@after} % The |\key|-rule works by calling a nested expansion chain with swapped \key\ % and \val. Instead of |\ekv@mark| marking the end of the expansion chain % we use a different final step called |\ekv@key@after|, that simply checks % whether an |r|-rule was executed (\emph{error}) and ends the current % expansion step in the outer chain. % \begin{macrocode} \ekv@def@expansion@rule{\string\key}{#2#3\ekv@stop#4}% {}{{#4}#2\ekv@key@after\ekv@stop{#1}{}{#3}} \ekv@exparg{\ekv@def@expansion@rule{\string\ekv@key@after}{\ekv@stop#2#3#4}}% {\ekv@ifempty{#3}{}\ekv@err@key@no@reinsert} {{#2}#4\ekv@stop{#1}} % \end{macrocode} % \end{macro} % % % \begin{macro}[internal] % { % \ekv@set@pair,\ekv@set@pair@, % \ekv@set@pair@relax,\ekv@set@pair@undefined, % \ekv@set@pair@u,\ekv@set@pair@u@relax,\ekv@set@pair@no@u % } % |\ekv@set@pair| gets invoked with the space and brace stripped key-name as % its first, the value as the second (delimited by |\ekv@nil|), and the set % name as the third argument. It provides tests for the key-macros and % everything to be able to throw meaningful error messages if it isn't % defined. We have two routes here, one if |\lastnamedcs| is defined and one % if it isn't. The big difference is that if it is we can omit a |\csname| and % instead just expand |\lastnamedcs| once to get the control sequence. % If the macro is defined the value will be space and brace stripped and the % key-macro called. Else branch into the error handling provided by % |\ekv@set@pair@undefined|. % \begin{macrocode} \ekv@if@lastnamedcs {% \long\def\ekv@set@pair#1\ekv@mark#2#3\ekv@nil#4% {% \ifcsname#4{#1}\endcsname\expandafter\ekv@set@pair@\lastnamedcs\fi \ekv@set@pair@undefined{#3}{#1}{#2}% \ekv@set@other#4% } \ekv@exparg{\long\def\ekv@set@pair@undefined#1#2#3\ekv@set@other#4}% {% \romannumeral \ekv@exparg {\expandafter\ekv@zero\ekv@ifexp{#3}}% {\ekv@strip{#1}\ekv@expansion@set@pair}% {% \ifcsname#4{}u\endcsname\expandafter\ekv@set@pair@u\lastnamedcs\fi \ekv@set@pair@no@u{#1}{#2}{#3}% }% \ekv@set@other#4% } } {% \long\def\ekv@set@pair#1\ekv@mark#2#3\ekv@nil#4% {% \ifcsname#4{#1}\endcsname \expandafter\ekv@set@pair@\csname#4{#1}\endcsname \fi \ekv@set@pair@undefined{#3}{#1}{#2}% \ekv@set@other#4% } \ekv@exparg{\long\def\ekv@set@pair@undefined#1#2#3\ekv@set@other#4}% {% \romannumeral \ekv@exparg {\expandafter\ekv@zero\ekv@ifexp{#3}}% {\ekv@strip{#1}\ekv@expansion@set@pair}% {% \ifcsname#4{}u\endcsname \expandafter\ekv@set@pair@u\csname#4{}u\endcsname \fi \ekv@set@pair@no@u{#1}{#2}{#3}% }% \ekv@set@other#4% } } \ekv@expandedarg{\long\def\ekv@set@pair@#1\fi\ekv@set@pair@undefined#2}% {% \ekv@unexpanded{\fi\ifx#1\relax\ekv@set@pair@relax\fi}% \ekv@unexpanded\expandafter{\ekv@strip{#2}#1\ekv@set@next@other}% } \ekv@expandafter{\long\def\ekv@set@pair@relax\fi}% \ekv@strip{#1}#2\ekv@set@next@other {\fi\ekv@set@pair@undefined{#1}} \ekv@expandedarg{\long\def\ekv@set@pair@u#1\fi\ekv@set@pair@no@u#2}% {% \ekv@unexpanded {% \fi \ifx\relax#1% \ekv@set@pair@u@relax \fi }% \ekv@unexpanded\expandafter{\ekv@strip{#2}#1}% } \ekv@expandafter{\long\def\ekv@set@pair@u@relax\fi}\ekv@strip{\ekv@mark#1}#2% {\fi\ekv@set@pair@no@u.} \long\def\ekv@set@pair@no@u#1#2#3\ekv@set@other#4% {% \ekv@ifdefined{#4{#2}N}% \ekv@err@noarg \ekv@err@unknown #4{#2}{#3}% \ekv@set@other#4% } % \end{macrocode} % \end{macro} % % \begin{macro}[internal] % { % \ekv@set@key,\ekv@set@key@, % \ekv@set@key@relax,\ekv@set@key@undefined, % \ekv@set@key@u,\ekv@set@key@u@relax,\ekv@set@key@no@u % } % Analogous to |\ekv@set@pair|, |\ekv@set@key| builds the \Nkey-macro and % provides an error-branch. It'll test whether the key-macro is defined and if % so call it, else there might be some \expnotation, or errors are thrown. % \begin{macrocode} \ekv@if@lastnamedcs {% \long\def\ekv@set@key#1\ekv@mark#2#3% {% \ifcsname#3{#1}N\endcsname\expandafter\ekv@set@key@\lastnamedcs\fi \ekv@set@key@undefined{#1}{#2}% \ekv@set@other#3% } \ekv@exparg{\long\def\ekv@set@key@undefined#1#2\ekv@set@other#3}% {% \ekv@ifexp{#2}% \ekv@expansion@set@key {% \ifcsname#3{}uN\endcsname\expandafter\ekv@set@key@u\lastnamedcs\fi \ekv@set@key@no@u{#1}{#2}% }% \ekv@set@other#3% } } {% \long\def\ekv@set@key#1\ekv@mark#2#3% {% \ifcsname#3{#1}N\endcsname \expandafter\ekv@set@key@\csname#3{#1}N\endcsname \fi \ekv@set@key@undefined{#1}{#2}% \ekv@set@other#3% } \ekv@exparg{\long\def\ekv@set@key@undefined#1#2\ekv@set@other#3}% {% \ekv@ifexp{#2}% \ekv@expansion@set@key {% \ifcsname#3{}uN\endcsname \expandafter\ekv@set@key@u\csname#3{}uN\endcsname \fi \ekv@set@key@no@u{#1}{#2}% }% \ekv@set@other#3% } } \long\def\ekv@set@key@#1\fi\ekv@set@key@undefined {\fi\ifx#1\relax\ekv@set@key@relax\fi#1\ekv@set@next@other} \long\def\ekv@set@key@relax\fi#1\ekv@set@next@other{\fi\ekv@set@key@undefined} \long\def\ekv@set@key@u#1\fi\ekv@set@key@no@u {\fi\ifx\relax#1\ekv@set@key@u@relax\fi#1} \def\ekv@set@key@u@relax\fi#1{\fi\ekv@set@key@no@u} \long\def\ekv@set@key@no@u#1#2\ekv@set@other#3% {% \ekv@ifdefined{#3{#1}}% \ekv@err@reqval \ekv@err@unknown #3{#1}{#2}% \ekv@set@other#3% } % \end{macrocode} % \end{macro} % % \begin{macro}[internal] % { % \ekv@expansion@set@key,\ekv@expansion@set@key@, % \ekv@expansion@set@pair,\ekv@expansion@set@pair@ % } % These macros just pick up the pieces of the \expansion\ prefix as separate % arguments. The \val\ for the \expansion-rules is left empty. Once expansion % is done we loop back to |\ekv@set@key|, that'll pick up the processed \key\ % and set it if it's now defined. The same trick is used for a \kv\ pair. % \begin{macrocode} \long\def\ekv@expansion@set@key#1#2#3% {% \ekv@expansion@rule@{#2}#1\ekv@mark\ekv@stop{}{}\ekvmorekv \ekv@expansion@set@key@ } \long\def\ekv@expansion@set@key@#1#2\ekv@set@other#3% {\expandafter\ekv@set@key\detokenize{#2}\ekv@mark{#2}#3} \long\def\ekv@expansion@set@pair#1#2#3#4% {% \ekv@expansion@rule@{#1}#2\ekv@mark\ekv@stop{#3}{}\ekvmorekv \ekv@expansion@set@pair@ } \long\def\ekv@expansion@set@pair@#1#2\ekv@set@other#3% {\expandafter\ekv@set@pair\detokenize{#1}\ekv@mark{#1}\ekv@mark{#2}\ekv@nil#3} % \end{macrocode} % \end{macro} % % \begin{macro}[internal] % { % \ekv@expansion@parse@key,\ekv@expansion@parse@key@, % \ekv@expansion@parse@pair,\ekv@expansion@parse@pair@ % } % In |\ekvparse| we don't need to resort to looping back into |\ekv@parse@key| % or the like, we can simply leave the result via |\ekv@unexpanded|. % \begin{macrocode} \long\def\ekv@expansion@parse@key#1#2#3#4% {% \ekv@expansion@rule@{#3}#2\ekv@mark\ekv@stop{}{}\ekv@parse@more \ekv@expansion@parse@key@\@gobble{#1}% } \long\def\ekv@expansion@parse@key@#1#2\@gobble#3{\ekv@unexpanded{#3{#2}}} \long\def\ekv@expansion@parse@pair#1#2#3#4#5% {% \ekv@expansion@rule@{#1}#3\ekv@mark\ekv@stop{#4}{}\ekv@parse@more \ekv@expansion@parse@pair@\@gobble{#2}% } \long\def\ekv@expansion@parse@pair@#1#2\@gobble#3{\ekv@unexpanded{#3{#1}{#2}}} % \end{macrocode} % \end{macro} % % \begin{macro}{\ekvsetdef} % Provide a macro to define a shorthand to use |\ekvset| on a specified \set. % To gain the maximum speed |\ekvset| is expanded twice by % |\ekv@exparg| so that during runtime the macro storing the set name % is already built and one |\expandafter| doesn't have to be used. % \begin{macrocode} \ekv@exparg{\protected\def\ekvsetdef#1#2}% {% \romannumeral \ekv@exparg{\expandafter\ekv@zero\ekv@exparg{\def#1##1}}% {\ekvset{#2}{##1}}% } % \end{macrocode} % \end{macro} % % \begin{macro}{\ekvsetSneakeddef,\ekvsetdefSneaked} % And do the same for |\ekvsetSneaked| in the two possible ways, with a fixed % sneaked argument and with a flexible one. % \begin{macrocode} \ekv@exparg{\protected\def\ekvsetSneakeddef#1#2}% {% \romannumeral \ekv@exparg{\expandafter\ekv@zero\ekv@exparg{\def#1##1##2}}% {\ekvsetSneaked{#2}{##1}{##2}}% } \ekv@exparg{\protected\long\def\ekvsetdefSneaked#1#2#3}% {% \romannumeral \ekv@exparg{\expandafter\ekv@zero\ekv@exparg{\def#1##1}}% {\ekvsetSneaked{#2}{#3}{##1}}% } % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@alignsafe,\ekv@endalignsafe} % These macros protect the usage of ampersands inside of alignment contexts. % \begin{macrocode} \begingroup \catcode`\^^@=2 \@firstofone{\endgroup \def\ekv@alignsafe{\romannumeral\iffalse{\fi`^^@ } } \begingroup \catcode`\^^@=1 \@firstofone{\endgroup \edef\ekv@endalignsafe{\ekv@unexpanded{\romannumeral`^^@\iffalse}\fi} } } % \end{macrocode} % \end{macro} % % \begin{macro}{\ekvoptarg,\ekvoptargTF} % Provide macros to expandably collect an optional argument in brackets. The % macros here are pretty simple in nature compared to \pkg{xparse}'s % possibilities (they don't care for nested bracket levels). % % We start with a temporary definition to pre-expand |\ekv@alignsafe| (will be % |#1|) and |\ekv@endalignsafe| (will be |#2|). As |\ekv@alignsafe| starts with % a |\romannumeral| we use that to also control the number of steps needed % instead of adding another |\romannumeral|. For this we have to remove the % space token from the end of |\ekv@alignsafe|'s definition. % \begin{macrocode} \begingroup \def\ekvoptarg#1#2{% \endgroup % \end{macrocode} % The real definition starts an expansion context and afterwards grabs the % arguments. |#1| will be the next step, |#2| the default value, and |#3| might % be an opening bracket, or the mandatory argument. We check for the opening % bracket, if it is found grab the optional argument, else leave |#1{#2}| in the % input stream after ending the expansion context. % \begin{macrocode} \def\ekvoptarg{#1\ekv@optarg@a} \long\def\ekv@optarg@a##1##2##3% {% \ekv@optarg@if\ekv@mark##3\ekv@mark\ekv@optarg@b\ekv@mark[\ekv@mark #2% \@firstofone{ ##1}{##2}{##3}% }% % \end{macrocode} % The other variant of this will do roughly the same. Here, |#1| will be the % next step if an optional argument is found, |#2| the next step else, and |#3| % might be the opening bracket or mandatory argument. % \begin{macrocode} \def\ekvoptargTF{#1\ekv@optargTF@a} \long\def\ekv@optargTF@a##1##2##3% {% \ekv@optarg@if\ekv@mark##3\ekv@mark\ekv@optargTF@b{##1}\ekv@mark[\ekv@mark #2% \@firstofone{ ##2}{##3}% } % \end{macrocode} % The two macros to grab the optional argument have to remove the remainder of % the test and the wrong next step as well as grabbing the argument. % \begin{macrocode} \@firstofone{\long\def\ekv@optarg@b \ekv@mark[\ekv@mark\romannumeral`##1\fi} \@firstofone##2##3##4##5]% {#2##2{##5}} \@firstofone{\long\def\ekv@optargTF@b ##1\ekv@mark[\ekv@mark\romannumeral`##2\fi} \@firstofone##3##4##5]% {#2 ##1{##5}} } % \end{macrocode} % Do the definitions and add the test macro. We use |\ekv@strip| to remove the % trailing space from the definition of |\ekv@alignsafe|. % \begin{macrocode} \ekv@exparg {\ekv@exparg\ekv@strip{\expandafter\ekv@mark\ekv@alignsafe}\ekvoptarg}% \ekv@endalignsafe \long\def\ekv@optarg@if#1\ekv@mark[\ekv@mark{} % \end{macrocode} % \end{macro} % % \begin{macro}[internal]{\ekv@ifstar} % Internal helper to get an expandable |ifstar| implementation. This is pretty % straight forward. % \begin{macrocode} \long\def\ekv@ifstar#1#2#3% {% \ekv@ifatmostone{#3}% {\if*\string#3\ekv@fi@firstoftwo\fi}% {}% \@secondoftwo {#1}% {#2{#3}}% } % \end{macrocode} % \end{macro} % % \begin{macro}{\ekvcompile} % The idea of key-compilation is to preparse some list into a form that sets % that list very fast (but is frozen), in our case this means we do everything % except expanding the key's code. There are two levels of expansion possible, % either expand until the key-macro or expand the key-macro once as well (the % latter might break if the key-macros take additional arguments). The % following supports both by using a starred form. % \begin{macrocode} \protected\long\def\ekvcompile {% \ekv@alignsafe \ekv@ifstar{\ekv@compile{}}{\ekv@compile{\expandafter\expandafter}}% } % \end{macrocode} % \begin{macro}[internal] % {\ekv@compile,\ekv@compile@,\ekv@compile@key,\ekv@compile@pair} % |\ekvparse| starts with an |\unexpanded| that we don't need. Hence we use a % temporary definition to remove that. Else this is pretty straight forward. % There is a minor indirection (the parsing step of |\ekv@compile|) which is % necessary to grab any argument specification. % \begin{macrocode} \def\ekv@compile#1#2#3#{\ekv@compile@{#1}{#2#3}} \def\ekv@compile@#1#2#3{#2#3} \ekv@exparg{\protected\long\def\ekv@compile@#1#2#3#4}% {% \expandafter\ekv@expanded\expandafter {% \romannumeral\ekv@expargtwice{\ekv@zero\def\ekv@unexpanded{#2}}% {% \expandafter\ekv@compile@ \ekvparse {\ekv@compile@key{#1}{#3}}% {\ekv@compile@pair{#1}{#3}}% {#4}% }% }% \ekv@endalignsafe } % \end{macrocode} % The compilation step just checks whether the keys are defined and leaves % their code (maybe expanded once). % \begin{macrocode} \ekv@exparg{\long\def\ekv@compile@key#1#2#3}% {% \ekvifdefinedNoVal{#2}{#3}% {\ekv@unexpanded#1\expandafter{\csname\ekv@name{#2}{#3}N\endcsname}}% {% \ekv@ifdefined{\ekv@name{#2}{}uN} {% \ekv@unexpanded#1\expandafter {% \csname\ekv@name{#2}{}uN\expandafter\endcsname \expandafter{\detokenize{#3}}{#3}% }% }% {% \ekvifdefined{#2}{#3}% {\ekv@err{missing value for `#3' in set `#2'}}% {\ekv@err{unknown key `#3' in set `#2'}}% }% }% } \ekv@exparg{\long\def\ekv@compile@pair#1#2#3#4}% {% \ekvifdefined{#2}{#3}% {\ekv@unexpanded#1\expandafter{\csname\ekv@name{#2}{#3}\endcsname{#4}}}% {% \ekv@ifdefined{\ekv@name{#2}{}u}% {% \ekv@unexpanded#1\expandafter {% \csname\ekv@name{#2}{}u\ekv@expanded{\endcsname {\ekv@unexpanded{#4}}{\detokenize{#3}}}{#3}% }% }% {% \ekvifdefinedNoVal{#2}{#3}% {\ekv@err{unwanted value for `#3' in set `#2'}}% {\ekv@err{unknown key `#3' in set `#2'}}% }% }% } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\ekverr} % \begin{macro}[internal]{\ekv@err@collect,\ekv@err@cleanup} % Since |\ekvset| is fully expandable as long as the code of the keys is (which % is unlikely) we want to somehow throw expandable errors, in our case via % a runaway argument (to my knowledge the first version of this method was % implemented by Jean-François Burnol, many thanks to him). The first step is to % ensure that the second argument (which might contain user input) doesn't % contain tokens we use as delimiters (in this case |\par|), this will be done % by the front facing macro |\ekverr|. But first we set some other things up. % % We use a temporary definition for |\ekverr| to get multiple consecutive % spaces. Then we set up the macro that will collect the error and the macro % that will throw the error. The latter will have an unreasonable long name. % This way we can convey more information. Though the information in the macro % name is static and has to be somewhat general to fit every occurence. The % important bit is that the long named macro has a delimited argument and is % short which will throw the error at the |\par| at the end of % |\ekv@err@collect|. This macro has the drawback that it will only print nicely % if the |\newlinechar| is |^^J|. % \begin{macrocode} \def\ekv@err@cleanup\par{} \def\ekv@err@collect#1% {% \def\ekv@err@collect##1\par##2% {% \expandafter \ekv@err@cleanup #1! ##2 Error: ##1\par }% \def#1##1\thanks@jfbu{}% } \def\ekverr{ } \expandafter\ekv@err@collect\csname ^^J% completed due to above exception. \ekverr If the error^^J% summary is \ekverr not comprehensible \ekverr see the package^^J% documentation.^^J% I will try to recover now. \ekverr If you're in inter-^^J% active mode hit \ekverr at the ? prompt and I^^J% continue hoping recovery\endcsname % \end{macrocode} % \begin{macrocode} \long\def\ekverr#1#2{\expandafter\ekv@err@collect\detokenize{#2}\par{#1}} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[internal]{\ekv@err,\ekv@errm} % We define shorthands to throw errors in \expkv. % \begin{macrocode} \ekv@exparg{\long\def\ekv@err#1}{\ekverr{expkv}{#1}} \protected\long\def\ekv@errm#1{\errmessage{expkv Error: #1}} % \end{macrocode} % \end{macro} % % \begin{macro}[internal] % { % \ekv@err@common,\ekv@err@common@, % \ekv@err@unknown,\ekv@err@noarg,\ekv@err@reqval, % \ekv@err@undefined@expansion % } % Now we can use |\ekv@err| to set up some error messages so that we can later % use those instead of the full strings. % \begin{macrocode} \long\def\ekv@err@common #1#2{\expandafter\ekv@err@common@\string#2{#1}} \ekv@exparg{\long\def\ekv@err@common@#1`#2' #3.#4#5}% {\ekv@err{#4 `#5' in set `#2'}} \ekv@exparg{\long\def\ekv@err@unknown#1#2}{\ekv@err@common{unknown key}{#1}} \ekv@exparg{\long\def\ekv@err@noarg#1#2}% {\ekv@err@common{unwanted value for}{#1}} \ekv@exparg{\long\def\ekv@err@reqval#1#2}% {\ekv@err@common{missing value for}{#1}} \ekv@exparg{\long\def\ekv@err@redirect@kv@notfound#1#2#3\ekv@stop}% {\ekv@err{no key `#2' in sets #3}} \ekv@exparg{\def\ekv@err@redirect@k@notfound#1#2\ekv@stop}% {\ekv@err{no NoVal key `#1' in sets #2}} \ekv@exparg{\def\ekv@err@undefined@expansion#1\fi}% {\expandafter\fi\ekv@err{Undefined expansion rule `#1'}} \ekv@exparg{\def\ekv@err@erroneous@variable#1}% {\ekv@err{Erroneous variable `#1' used}} \ekv@exparg{\def\ekv@err@key@no@reinsert}% {\ekv@err{Reinsertion in \key expansion forbidden}} \ekv@exparg{\def\ekv@err@val@no@reinsert#1}% {\ekv@err{Reinsertion with key `#1' forbidden}} % \end{macrocode} % \end{macro} % % Now everything that's left is to reset the category code of |@|. % \begin{macrocode} \catcode`\@=\ekv@tmp % \end{macrocode} % % \gobbledocstriptag % %^^A=<<